229 research outputs found

    Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case

    Get PDF
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and β€œsynthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΞ”NSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΞ”NSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    Identification and characterization of a novel non-structural protein of bluetongue virus

    Get PDF
    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell

    Augmented Reality Application in Manufacturing Industry: Maintenance and Non-destructive Testing (NDT) Use Cases

    Get PDF
    In recent years, a structural transformation of the manufacturing industry has been occurring as a result of the digital revolution. Thus, digital tools are now systematically used throughout the entire value chain, from design to production to marketing, especially virtual and augmented reality. Therefore, the purpose of this paper is to review, through concrete use cases, the progress of these novel technologies and their use in the manufacturing industry

    Augmented instructions : analysis of performance and efficiency of assembly tasks

    Get PDF
    Augmented Reality (AR) technology makes it possible to present information in the user’s line of sight, right at the point of use. This brings the capability to visualise complex information for industrial maintenance applications in an effective manner, which typically rely on paper instructions and tacit knowledge developed over time. Existing research in AR instruction manuals has already shown its potential to reduce the time taken to complete assembly tasks, as well as improving accuracy [1–3]. In this study, the outcomes of several aspects of AR instructions are explored and their effects on the chosen Key Performance Indicators (KPIs) of task completion time, error rate, cognitive effort and usability are assessed. A standardised AR assembly task is also described for performance comparison, and a novel AR experimental tool is presented, which takes advantage of the flexibility of internet connected peripherals, to explore various different aspects of AR app design to isolate their effects. Results of the experiments are given here, providing insight into the most effective way of delivering information and promoting interaction between user and computer, in terms of user performance and acceptance

    Consanguineous marriages and endemic malaria: can inbreeding increase population fitness?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The practice of consanguineous marriages is widespread in countries with endemic malaria. In these regions, consanguinity increases the prevalence of Ξ±<sup>+</sup>-thalassemia, which is protective against malaria. However, it also causes an excessive mortality amongst the offspring due to an increase in homozygosis of recessive lethal alleles. The aim of this study was to explore the overall effects of inbreeding on the fitness of a population infested with malaria.</p> <p>Methods</p> <p>In a stochastic computer model of population growth, the sizes of inbred and outbred populations were compared. The model has been previously validated producing results for inbred populations that have agreed with analytical predictions. Survival likelihoods for different Ξ±<sup>+</sup>-thalassemia genotypes were obtained from the odds of severe forms of disease from a field study. Survivals were further estimated for different values of mortality from malaria.</p> <p>Results</p> <p>Inbreeding increases the frequency of Ξ±<sup>+</sup>-thalassemia allele and the loss of life due to homozygosis of recessive lethal alleles; both are proportional to the coefficient of inbreeding and the frequency of alleles in population. Inbreeding-mediated decrease in mortality from malaria (produced via enhanced Ξ±<sup>+</sup>-thalassemia frequency) mitigates inbreeding-related increases in fatality (produced via increased homozygosity of recessive lethals). When the death rate due to malaria is high, the net effect of inbreeding is a reduction in the overall mortality of the population.</p> <p>Conclusion</p> <p>Consanguineous marriages may increase the overall fitness of populations with endemic malaria.</p
    • …
    corecore